

Flow Form Framework 5.0 Documentation

This documentation covering version 5.0 has been rendered at: Jun 26, 2023

Forms

The Form API is an extensible and flexible framework to build web forms.

It includes the following features:

	Ready-to-use standard form elements

	Creation of Multi-Step Forms

	Server- and Client-Side Validation

	highly flexible rendering of form elements, based on Fluid or any custom renderer

	Extensible with new form elements

	robust, object oriented API

	Integration into Neos Flow and Neos CMS

Also, there are some useful Related Packages [https://github.com/neos/form#related-packages] that make use
of the extension points and provide useful additions.
For example there is the original Form YAML Builder [https://packagist.org/packages/neos/form-yamlbuilder] that is a
Flow based web application for graphically assembling and modifying forms:

[image: _images/YamlFormBuilder.png]
Since version 5 there’s also a Neos Form Builder [https://packagist.org/packages/neos/form-builder] that adds these
features and more to the Neos CMS Backend:

[image: _images/NeosFormBuilder.png]

About This Documentation

This documentation contains a number of tutorial-style guides which will explain
various aspects of the Form API and the Form Framework. It is not intended as in-depth
reference, although there will be links to the in-depth API reference at various points.

	Quickstart
	API Overview

	Anatomy of a Form

	Create your first form

	Render a form

	Validation

	Finishers

	Summary

	Next Steps

	Configuring form rendering with YAML
	Setup

	Form configuration

	File Uploads

	Adjusting Form Output
	Presets Explained

	Form Element Types Explained

	Supertypes

	Creating a Custom Preset

	Adjusting a Form Element Template

	Changing The Form Layout

	Creating a New Form Element

	Translating Forms
	Configuration

	XLIFF files

	Complete example

	Extending Form API
	Custom PHP-based Form Elements

	Custom Form Element Renderers

Credits

The initial implementation has been generously sponsored by AKOM360 - Multi Channel Marketing [http://akom360.de].
Further work has been supported by internezzo ag - agentur für online-kommunikation [http://www.internezzo.ch] and Format D GmbH [https://www.format-d.com]

It has been implemented by:

	Sebastian Kurfürst, sandstorm|media [https://sandstorm.de]

	Bastian Waidelich, wwwision [http://wwwision.de]

Quickstart

After working through this guide, you will have learned:

	the structure of a form

	creating a form using the API

	rendering a form

	adding validation rules

	invoking actions after the form is finished

API Overview

The image below shows the high-level API overview of the this package.

First, we will dive into the API part defining a form, and then go over to
rendering a form. In later chapters, we will also show how loading / saving
a form definition works.

[image: _images/structure.png]

Anatomy of a Form

A form is described by the so-called FormDefinition [https://github.com/neos/form/tree/master/Classes/Core/Model/FormDefinition.php], which is a container object
for the form that consists of one or more Pages in which the actual FormElements are located.

As an example, let’s take a basic contact form with the following structure:

	
	Contact Form (Form)

	
	
	Page 01 (Page)

	
	Name (Single-line Text)

	Email (Single-line Text)

	Message (Multi-line Text)

Our form just has a single page that contains three input fields: Name, Email
and Message.

Note

Every form needs to have at least one page.

Further Information

In-depth information about the form structure can be found in the
FormDefinition [https://github.com/neos/form/tree/master/Classes/Core/Model/FormDefinition.php] API Documentation.

Create your first form

Now, let’s try to create the basic contact form from above.
For this we need to implement a so-called FormFactory [https://github.com/neos/form/tree/master/Classes/Factory/AbstractFormFactory.php],
which is responsible for creating the form.

Note

The package comes with a ready-to-use factory for building forms based on YAML
files describing the forms. See Configuring form rendering with YAML for details.

If you want to build a form with PHP, the skeleton for building a form looks as follows:

namespace Your\Package;

use Neos\Flow\Annotations as Flow;
use Neos\Form\Core\Model\FormDefinition;

class QuickstartFactory extends \Neos\Form\Factory\AbstractFormFactory {

 /**
 * @param array $factorySpecificConfiguration
 * @param string $presetName
 * @return \Neos\Form\Core\Model\FormDefinition
 */
 public function build(array $factorySpecificConfiguration, $presetName) {
 $formConfiguration = $this->getPresetConfiguration($presetName);
 $form = new FormDefinition('yourFormIdentifier', $formConfiguration);
 // Now, build your form here
 return $form;
 }
}

As you can see there is the build() method that you have to implement; and this method
needs to return the FormDefinition [https://github.com/neos/form/tree/master/Classes/Core/Model/FormDefinition.php].

Lets add the one page and input fields for name, email and message of our contact form:

public function build(array $factorySpecificConfiguration, $presetName) {
 $formConfiguration = $this->getPresetConfiguration($presetName);
 $form = new FormDefinition('contactForm', $formConfiguration);

 $page1 = $form->createPage('page1');

 $name = $page1->createElement('name', 'Neos.Form:SingleLineText');
 $name->setLabel('Name');

 $email = $page1->createElement('email', 'Neos.Form:SingleLineText');
 $email->setLabel('Email');

 $comments = $page1->createElement('message', 'Neos.Form:MultiLineText');
 $comments->setLabel('Message');

 return $form;
}

You see that we used the API method createPage($identifier), which creates a new page inside
the form object and returns it for further use. Then, we used createElement($identifier, $type)
to create the form elements and set some options on them.

The $identifier is used to identify a form element, thus it needs to be unique
across the whole form. $type references an Element Type.

Note

By default the $identifier is part of the id attribute of the rendered Form Element so it should be lowerCamelCased and must not contain special characters.

Tip

As you will learn in the next guide, you can define your own Element Types easily.
The element types referenced above (Neos.Form:SingleLineText and Neos.Form:MultiLineText)
are just element types which are delivered by default by the framework.

Render a form

Now that we have created the first FormDefinition how can we display the actual form?
That is really easy with the provided form:render [https://github.com/neos/form/tree/master/Classes/ViewHelpers/RenderViewHelper.php] ViewHelper:

{namespace form=Neos\Form\ViewHelpers}
<form:render factoryClass="Your\Package\YourFactory" />

If you put that snippet in your Fluid template and replace YourPackage with your package
namespace and YourFactory with the class name of the previously generated form factory,
you should see a form consisting of the three text fields and a submit button.

But as you can see, none of the fields are required and the email address is not
verified. So let’s add some basic validation rules:

Validation

Every FormElement [https://github.com/neos/form/tree/master/Classes/Core/Model/AbstractFormElement.php] implements the FormElementInterface [https://github.com/neos/form/tree/master/Classes/Core/Model/FormElementInterface.php]
which provides a convenient way to work with Neos Flow validators:

$name->addValidator(new \Neos\Flow\Validation\Validator\NotEmptyValidator());

$email->addValidator(new \Neos\Flow\Validation\Validator\NotEmptyValidator());
$email->addValidator(new \Neos\Flow\Validation\Validator\EmailAddressValidator());

$comments->addValidator(new \Neos\Flow\Validation\Validator\NotEmptyValidator());
$comments->addValidator(new \Neos\Flow\Validation\Validator\StringLengthValidator(array('minimum' => 3)));

With the addValidator($validator) method you can attach one or more validators to a form element.
If you save the changes and reload the page where you embedded the form, you can see that
all text fields are required now, that the email address is syntactically verified and that
you need to write a message of at least 3 characters. If you try to submit the form with
invalid data, validation errors are displayed next to each erroneous field.

If you do enter name, a valid email address and a message you can submit the
form - and see a blank page. That’s where so called Finishers come into play.

Finishers

A Finisher [https://github.com/neos/form/tree/master/Classes/Core/Model/FinisherInterface.php] is a piece of PHP code that is executed
as soon as a form has been successfully submitted (if the last page has been sent
and no validation errors occurred).

You can attach multiple finishers to a form.

For this example we might want to send the data to an email address, and we can use
the EmailFinisher [https://github.com/neos/form/tree/master/Classes/Finishers/EmailFinisher.php] for that:

$emailFinisher = new \Neos\Form\Finishers\EmailFinisher();
$emailFinisher->setOptions(array(
 'templatePathAndFilename' => 'resource://Your.Package/Private/Templates/ContactForm/NotificationEmail.txt',
 'recipientAddress' => 'your@example.com',
 'senderAddress' => 'mailer@example.com',
 'replyToAddress' => '{email}',
 'carbonCopyAddress' => 'copy@example.com',
 'blindCarbonCopyAddress' => 'blindcopy@example.com',
 'subject' => 'Contact Request',
 'format' => \Neos\Form\Finishers\EmailFinisher::FORMAT_PLAINTEXT
));
$form->addFinisher($emailFinisher);

The corresponding NotificationEmail.txt template could look like this:

New contact form mail:

From: {formValues.name} ({formValues.email})
Message:

{formValues.message}

Note

Form values can be accessed via formValues.*

And afterwards we want to redirect the user to some confirmation action, thus
we add the RedirectFinisher [https://github.com/neos/form/tree/master/Classes/Finishers/RedirectFinisher.php]:

$redirectFinisher = new \Neos\Form\Finishers\RedirectFinisher();
$redirectFinisher->setOptions(
 array('action' => 'confirmation')
);
$form->addFinisher($redirectFinisher);

Summary

That’s it for the quickstart. The complete code of your form factory should look something like this now:

namespace Your\Package;

use Neos\Flow\Annotations as Flow;
use Neos\Form\Core\Model\FormDefinition;

/**
 * Flow\Scope("singleton")
 */
class QuickstartFactory extends \Neos\Form\Factory\AbstractFormFactory {

 /**
 * @param array $factorySpecificConfiguration
 * @param string $presetName
 * @return \Neos\Form\Core\Model\FormDefinition
 */
 public function build(array $factorySpecificConfiguration, $presetName) {
 $formConfiguration = $this->getPresetConfiguration($presetName);
 $form = new FormDefinition('contactForm', $formConfiguration);

 $page1 = $form->createPage('page1');

 $name = $page1->createElement('name', 'Neos.Form:SingleLineText');
 $name->setLabel('Name');
 $name->addValidator(new \Neos\Flow\Validation\Validator\NotEmptyValidator());

 $email = $page1->createElement('email', 'Neos.Form:SingleLineText');
 $email->setLabel('Email');
 $email->addValidator(new \Neos\Flow\Validation\Validator\NotEmptyValidator());
 $email->addValidator(new \Neos\Flow\Validation\Validator\EmailAddressValidator());

 $comments = $page1->createElement('message', 'Neos.Form:MultiLineText');
 $comments->setLabel('Message');
 $comments->addValidator(new \Neos\Flow\Validation\Validator\NotEmptyValidator());
 $comments->addValidator(new \Neos\Flow\Validation\Validator\StringLengthValidator(array('minimum' => 3)));

 $emailFinisher = new \Neos\Form\Finishers\EmailFinisher();
 $emailFinisher->setOptions(array(
 'templatePathAndFilename' => 'resource://Your.Package/Private/Templates/ContactForm/NotificationEmail.txt',
 'recipientAddress' => 'your@example.com',
 'senderAddress' => 'mailer@example.com',
 'replyToAddress' => '{email}',
 'carbonCopyAddress' => 'copy@example.com',
 'blindCarbonCopyAddress' => 'blindcopy@example.com',
 'subject' => 'Contact Request',
 'format' => \Neos\Form\Finishers\EmailFinisher::FORMAT_PLAINTEXT
));
 $form->addFinisher($emailFinisher);

 $redirectFinisher = new \Neos\Form\Finishers\RedirectFinisher();
 $redirectFinisher->setOptions(
 array('action' => 'confirmation')
);
 $form->addFinisher($redirectFinisher);

 return $form;
 }
}

Next Steps

Now, you know how to build forms using the API. In the next tutorial, you will learn how to
adjust the form output and create new form elements – all without programming!

Continue with: Adjusting Form Output

Configuring form rendering with YAML

Setup

To render a form based on a YAML configuration file, simply use the Neos.Form render ViewHelper.
It uses the Neos\Form\Factory\ArrayFormFactory by default, which needs to know where the form
configuration is stored. This is done in Settings.yaml:

Neos:
 Form:
 yamlPersistenceManager:
 savePath: 'resource://AcmeCom.SomePackage/Private/Form/'

From now on, every YAML file stored there can be loaded by using the filename as the persistence
identifier given to the render ViewHelper. So if you have a file named contact.yaml, it
can be rendered with:

<form:render persistenceIdentifier="contact"/>

Form configuration

Generally speaking, the configuration is a nested structure that contains the keys type, identifier and
renderables and further options (e.g. label) depending on the type of the current level.

The element types referenced below (Neos.Form:SingleLineText and Neos.Form:MultiLineText)
are just element types which are delivered by default by the framework. All available types can be
found in the settings of the Neos.Form package under Neos.Form.presets.default.formElementTypes.

On the top level, the finishers can be configured as an array of identifier and options keys. The
available options depend on the finisher being used.

Let us examine the configuration for a basic contact form with the following structure:

	
	Contact Form (Form)

	
	
	Page 01 (Page)

	
	Name (Single-line Text)

	Email (Single-line Text)

	Message (Multi-line Text)

The following YAML is stored as contact.yaml:

type: 'Neos.Form:Form'
identifier: 'contact'
label: 'Contact form'
renderables:
 -
 type: 'Neos.Form:Page'
 identifier: 'page-one'
 renderables:
 -
 type: 'Neos.Form:SingleLineText'
 identifier: name
 label: 'Name'
 validators:
 - identifier: 'Neos.Flow:NotEmpty'
 -
 type: 'Neos.Form:SingleLineText'
 identifier: email
 label: 'Email'
 validators:
 - identifier: 'Neos.Flow:NotEmpty'
 - identifier: 'Neos.Flow:EmailAddress'
 -
 type: 'Neos.Form:MultiLineText'
 identifier: message
 label: 'Message'
 validators:
 - identifier: 'Neos.Flow:NotEmpty'
finishers:
 -
 identifier: 'Neos.Form:Email'
 options:
 templatePathAndFilename: resource://AcmeCom.SomePackage/Private/Templates/Form/Contact.txt
 subject: '{subject}'
 recipientAddress: 'info@acme.com'
 recipientName: 'Acme Customer Care'
 senderAddress: '{email}'
 senderName: '{name}'
 format: plaintext

Note

Instead of setting the templatePathAndFilename option to specify the Fluid template file for the EmailFinisher,
the template source can also be set directly via the templateSource option.

File Uploads

The default preset comes with an FileUpload form element that allows the user of the form to upload arbitrary
files.
The EmailFinisher allows these files to be sent as attachments:

type: 'Neos.Form:Form'
identifier: 'application'
label: 'Example application form'
renderables:
 -
 type: 'Neos.Form:Page'
 identifier: 'page-one'
 renderables:
 -
 type: 'Neos.Form:SingleLineText'
 identifier: email
 label: 'Email'
 validators:
 - identifier: 'Neos.Flow:NotEmpty'
 - identifier: 'Neos.Flow:EmailAddress'
 -
 type: 'Neos.Form:FileUpload'
 identifier: applicationform
 label: 'Application Form (PDF)'
 properties:
 allowedExtensions:
 - pdf
 validators:
 - identifier: 'Neos.Flow:NotEmpty'
finishers:
 -
 # Application email that is sent to "customer care" with all uploaded files attached
 identifier: 'Neos.Form:Email'
 options:
 templatePathAndFilename: 'resource://AcmeCom.SomePackage/Private/Form/EmailTemplates/Application.html'
 subject: 'New Application'
 recipientAddress: 'application@acme.com'
 senderAddress: '{email}'
 format: html
 attachAllPersistentResources: true
 -
 # Confirmation email that is sent to the user with a static file attachment
 identifier: 'Neos.Form:Email'
 options:
 templatePathAndFilename: 'resource://AcmeCom.SomePackage/Private/Form/EmailTemplates/Confirmation.html'
 subject: 'Your Application'
 recipientAddress: '{email}'
 senderAddress: 'application@acme.com'
 format: html
 attachments:
 - resource: 'resource://AcmeCom.SomePackage/Private/Form/EmailTemplates/Attachments/TermsAndConditions.pdf'

Note

attachments can also referenced via formElement paths explicitly, for example: - formElement: 'image-field.resource'

Adjusting Form Output

After working through this guide, you will have learned:

	how to adjust the form output

	how to create custom Form Presets

	how to create custom form elements

Generally, this guide answers the question: How can form output be modified without programming?

Presets Explained

In the Quickstart guide, you have seen how a basic form can be built. We
will now dissect the form element creation a little more, and explain the lines
which you might not have understood yet.

Let’s have a look at the boilerplate code inside the form factory again:

public function build(array $factorySpecificConfiguration, $presetName) {
 $formConfiguration = $this->getPresetConfiguration($presetName);
 $form = new FormDefinition('contactForm', $formConfiguration);
 // ...
}

You see that the second parameter is a $presetName which is passed to
getPresetConfiguration(). So, let’s introduce the concept of presets now.

A Preset is a container for pre-defined form configuration, and is the basic
way to adjust the form’s output. Presets are defined inside the Settings.yaml
file, like in the following example:

Neos:
 Form:
 presets:
 preset1:
 title: 'My First Preset'
 formElementTypes:
 'Neos.Form:SingleLineTextfield':
 # configuration for the single line textfield
 preset2:
 title: 'My Second Preset'
 parentPreset: 'preset1'
 # because preset2 *inherits* from preset1, only the changes between
 # preset1 and preset2 need to be defined here.

The above example defines two presets (preset1 and preset2). Because
preset2 defines a parentPreset, it inherits all options from preset1
if not specified otherwise.

Tip

The Neos.Form package already defines a preset with the name default
which contains all standard form elements. Look into Neos.Form/Configuration/Settings.yaml
for the details on the defined form elements.

In most cases, you will create a sub-preset of the default preset, modifying
only the parts you need.

The method getPresetConfiguration($presetName) in AbstractFormFactory [https://github.com/neos/form/tree/master/Classes/Factory/AbstractFormFactory.php]
evaluates the preset inheritance hierarchy and returns a merged array of the preset
configuration.

Form Element Types Explained

Now that we have seen that presets can inherit from each other, let’s look inside
the preset configuration. One particularily important part of each preset configuration
is the form element type definition, which configures each form element correctly.

As an example, let’s create a text field with the following snippet:

$name = $page1->createElement('name', 'Neos.Form:SingleLineText');
$name->setLabel('Name');

In the above example, the form element type is Neos.Form:SingleLineText, and
when creating the form element, it applies all default values being set inside
the form element type. As an example, take the following type definition:

'Neos.Form:SingleLineText':
 defaultValue: 'My Default Text'
 properties:
 placeholder: 'My Placeholder Text'

That’s exactly the same as if one wrote the following PHP code:

$name->setDefaultValue('My Default Text');
$name->setProperty('placeholder', 'My Placeholder Text');

So $page->createElement($identifier, $formElementType) is essentially a very
specialized factory method, which automatically applies the default values from
the form element definition on the newly created form object before returning it.

Tip

The defaults are not only applied on single form elements, but also
on the FormDefinition and Page objects. The FormDefinition object has, by
convention, the form element type Neos.Form:Form, but you can also
override it by passing the to-be-used type as third parameter to the
constructor of FormDefinition [https://github.com/neos/form/tree/master/Classes/Core/Model/FormDefinition.php].

A page has, by default, the form element type Neos.Form:Page, and you can
override it by supplying a second parameter to the createPage() method of
FormDefinition [https://github.com/neos/form/tree/master/Classes/Core/Model/FormDefinition.php].

Supertypes

Now, there’s one more secret ingredient which makes the form framework powerful:
Every form element type can have one or multiple supertypes; and this
allows to only specify the differences between the “parent” form element and
the newly created one, effectively creating an inheritance hierarchy of form elements.

The following example demonstrates this:

'Neos.Form:SingleLineText':
 defaultValue: 'My Default Text'
 properties:
 placeholder: 'My Placeholder Text'
'Neos.Form:SpecialText':
 superTypes:
 'Neos.Form:SingleLineText' : TRUE
 defaultValue: 'My special text'

Here, the SpecialText inherits the placeholder property from the SingleLineText
and only overrides the default value.

Together, presets (with parent presets) and form element types (with supertypes)
form a very flexible foundation to customize the rendering in any imaginable way,
as we will explore in the remainder of this guide.

Note

If multiple super types are specified, they are evaluated from left to right, i.e.
later super types override previous definitions.

Previously the superTypes configuration was just a simple list of strings:

'Neos.Form:SpecialText':
 superTypes:
 'Neos.Form:SingleLineText': TRUE
 defaultValue: 'My special text'

But this made it impossible to unset a super type from a 3rd party package.
The old syntax is still supported but is deprecated and might be removed in future versions.

Creating a Custom Preset

First, we create a sub-preset inheriting from the default preset. For that,
open up Your.Package/Configuration/Settings.yaml and insert the following
contents:

Neos:
 Form:
 presets:
 myCustom:
 title: 'Custom Elements'
 parentPreset: 'default'

You now created a sub preset named myCustom which behaves exactly the same as
the default preset. If you now specify the preset name inside the <form:render>
ViewHelper you will not see any differences yet:

<form:render factoryClass="..." presetName="myCustom" />

Now we are set up to modify the custom preset, and can adjust the form output.

Adjusting a Form Element Template

The templates of the default Form Elements are located in Neos.Form/Resources/Private/Form/.
They are standard Fluid templates and most of them are really simple. Open up the
Single-Line Text template for example:

<f:layout name="Neos.Form:Field" />
<f:section name="field">
 <f:form.textfield property="{element.identifier}" id="{element.uniqueIdentifier}"
 placeholder="{element.properties.placeholder}" errorClass="error" />
</f:section>

As you can see, the Form Element templates use layouts in order to reduce duplicated markup.

Tip

The Fluid Form Renderer expects layout and partial names in the format <PackageKey>:<Name>.
That makes it possible to reference layouts and partials from other packages!

We’ll see how to change the layout in the next section. For now let’s try to simply change the
class attribute of the SingleLineText element.

For that, copy the default template to Your.Package/Private/Resources/CustomElements/SingleLineText.html
and adjust it as follows:

<f:layout name="Neos.Form:Field" />
<f:section name="field">
 <f:form.textfield property="{element.identifier}" id="{element.uniqueIdentifier}"
 placeholder="{element.properties.placeholder}" errorClass="error"
 class="customClass" />
</f:section>

Now, you only need to tell the framework to use your newly created template instead of the default one.
This can be archieved by overriding the rendering option templatePathPattern in the form element
type definition.

Adjust Your.Package/Configuration/Settings.yaml accordingly:

Neos:
 Form:
 presets:
 myCustom:
 title: 'Custom Elements'
 parentPreset: 'default'
 formElementTypes:
 'Neos.Form:SingleLineText':
 renderingOptions:
 templatePathPattern: 'resource://Your.Package/Private/CustomElements/SingleLineText.html'

Now, all Single-Line Text elements will have a class attribute of customClass
when using the myCustom preset.

A more realistic use-case would be to change the arrangement of form elements. Read on to see how you can easily change the
layout of a form.

Changing The Form Layout

By default, validation errors are rendered next to each form element. Imagine you want to render validation errors of the
current page above the form instead. For this you need to adjust the previously mentioned field layout.

The provided default field layout located in Neos.Form/Resources/Private/Form/Layouts/Field.html is a bit more verbose
as it renders the label, validation errors and an asterisk if the element is required (we slightly reformatted the template
here to improve readability):

{namespace form=Neos\Form\ViewHelpers}
<f:validation.results for="{element.identifier}">
 <!-- wrapping div for the form element; contains an identifier for the form element if we are
 in preview mode -->
 <div class="clearfix{f:if(condition: validationResults.flattenedErrors, then: ' error')}"
 <f:if condition="{element.rootForm.renderingOptions.previewMode}">
 data-element="{form:form.formElementRootlinePath(renderable:element)}"
 </f:if>
 >
 <!-- Label for the form element, and required indicator -->
 <label for="{element.uniqueIdentifier}">{element.label -> f:format.nl2br()}
 <f:if condition="{element.required}">
 <f:render partial="Neos.Form:Field/Required" />
 </f:if>
 </label>

 <!-- the actual form element -->
 <div class="input">
 <f:render section="field" />

 <!-- validation errors -->
 <f:if condition="{validationResults.flattenedErrors}">

 <f:for each="{validationResults.errors}" as="error">
 {error -> f:translate(id: error.code, arguments: error.arguments,
 package: 'Neos.Form', source: 'ValidationErrors')}

 </f:for>

 </f:if>
 </div>
 </div>
</f:validation.results>

Copy the layout file to Your.Package/Private/Resources/CustomElements/Layouts/Field.html and remove the validation related lines:

{namespace form=Neos\Form\ViewHelpers}
<f:validation.results for="{element.identifier}">
 <!-- wrapping div for the form element; contains an identifier for the form element if we are
 in preview mode -->
 <div class="clearfix{f:if(condition: validationResults.flattenedErrors, then: ' error')}"
 <f:if condition="{element.rootForm.renderingOptions.previewMode}">
 data-element="{form:form.formElementRootlinePath(renderable:element)}"
 </f:if>
 >
 <!-- Label for the form element, and required indicator -->
 <label for="{element.uniqueIdentifier}">{element.label -> f:format.nl2br()}
 <f:if condition="{element.required}">
 <f:render partial="Neos.Form:Field/Required" />
 </f:if>
 </label>

 <!-- the actual form element -->
 <div class="input">
 <f:render section="field" />
 </div>
 </div>
</f:validation.results>

Additionally you need to adjust the default form template located in Neos.Form/Resources/Private/Form/Form.html (remember
that a FormDefinition [https://github.com/neos/form/tree/master/Classes/Core/Model/FormDefinition.php] also has a form element type, by default of Neos.Form:Form), which looks
as follows by default:

{namespace form=Neos\Form\ViewHelpers}
<form:form object="{form}" action="index" method="post" id="{form.identifier}"
 enctype="multipart/form-data">
 <form:renderRenderable renderable="{form.currentPage}" />
 <div class="actions">
 <f:render partial="Neos.Form:Form/Navigation" arguments="{form: form}" />
 </div>
</form:form>

Copy this template file to Your.Package/Private/Resources/CustomElements/Form.html and add the validation result
rendering:

{namespace form=Neos\Form\ViewHelpers}
<form:form object="{form}" action="index" method="post" id="{form.identifier}"
 enctype="multipart/form-data">
 <f:validation.results>
 <f:if condition="{validationResults.flattenedErrors}">
 <ul class="error">
 <f:for each="{validationResults.flattenedErrors}" as="elementErrors"
 key="elementIdentifier" reverse="true">

 {elementIdentifier}:

 <f:for each="{elementErrors}" as="error">
 {error}
 </f:for>

 </f:for>

 </f:if>
 </f:validation.results>
 <form:renderRenderable renderable="{form.currentPage}" />
 <div class="actions">
 <f:render partial="Neos.Form:Form/Navigation" arguments="{form: form}" />
 </div>
</form:form>

Now, you only need to adjust the form definition in order to use the new templates:

Neos:
 Form:
 presets:
 ########### CUSTOM PRESETS ###########

 myCustom:
 title: 'Custom Elements'
 parentPreset: 'default'
 formElementTypes:

 # ...

 ### override template path of Neos.Form:Form ###
 'Neos.Form:Form':
 renderingOptions:
 templatePathPattern: 'resource://Neos.FormExample/Private/CustomElements/Form.html'

 ### override default layout path ###
 'Neos.Form:Base':
 renderingOptions:
 layoutPathPattern: 'resource://Neos.FormExample/Private/CustomElements/Layouts/{@type}.html'

Tip

You can use placeholders in templatePathPattern, partialPathPattern and layoutPathPattern:
{@package} will be replaced by the package key and {@type} by the current form element type
without namespace. A small example shall illustrate this:

If the form element type is Your.Package:FooBar, then {@package} is replaced by Your.Package,
and {@type} is replaced by FooBar. As partials and layouts inside form elements are also specified
using the Package:Type notation, this replacement also works for partials and layouts.

Creating a New Form Element

With the Form Framework it is really easy to create additional Form Element types.
Lets say you want to create a specialized version of the Neos.Form:SingleSelectRadiobuttons that already provides
two radio buttons for Female and Male. That’s just a matter of a few lines of yaml:

Neos:
 Form:
 presets:
 ########### CUSTOM PRESETS ###########

 myCustom:
 title: 'Custom Elements'
 parentPreset: 'default'
 formElementTypes:

 # ...

 'Your.Package:GenderSelect':
 superTypes:
 'Neos.Form:SingleSelectRadiobuttons': TRUE
 renderingOptions:
 templatePathPattern: 'resource://Neos.Form/Private/Form/SingleSelectRadiobuttons.html'
 properties:
 options:
 f: 'Female'
 m: 'Male'

As you can see, you can easily extend existing Form Element Definitions by specifying the superTypes.

Tip

We have to specify the templatePathPattern because according to the default path pattern
the template would be expected at Your.Package/Private/Resources/Form/GenderSelect.html otherwise.

Note

Form Elements will only be available in the preset they’re defined (and in it’s sub-presets).
Therefore you should consider adding Form Elements in the default preset to make them available for all
Form Definitions extending the default preset.

Translating Forms

If a form has been set up, all elements will use the labels, placeholders and so forth as configured.
To have the form translated depending on the current locale, you need to configure a package to load
the translations from and add the translations as XLIFF files.

Configuration

The package to load the translations from is configured in the form preset being used. The simplest
way to configure it is this:

Neos:
 Form:
 presets:
 default:
 formElementTypes:
 'Neos.Form:Base':
 renderingOptions:
 translationPackage: 'AcmeCom.SomePackage'

Of course it can be set in a custom preset in the same way.

The translation of validation error messages uses the Neos.Flow package by default, to avoid having to
copy the validation errors message catalog to all packages used for form translation. If you want to
adjust those error messages as well, copy ValidationErrors.xlf to your package and set the option
validationErrorTranslationPackage to your package key.

XLIFF files

The XLIFF files follow the usual rules, the Main catalog is used. The Form package comes with the following
catalog (Main.xlf):

<?xml version="1.0" encoding="UTF-8"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file original="" product-name="Neos.Form" source-language="en" datatype="plaintext">
 <body>
 <trans-unit id="forms.navigation.previousPage" xml:space="preserve">
 <source>Previous page</source>
 </trans-unit>
 <trans-unit id="forms.navigation.nextPage" xml:space="preserve">
 <source>Next page</source>
 </trans-unit>
 <trans-unit id="forms.navigation.submit" xml:space="preserve">
 <source>Submit</source>
 </trans-unit>
 </body>
 </file>
</xliff>

It should be copied to make sure the three expected units are available and can then be amended by your own
units.

For most reliable translations, the units should be given id properties based on the form configuration.
The schema is as follows:

	forms.navigation.nextPage

	In multi-page forms this is used for the navigation.

	forms.navigation.previousPage

	In multi-page forms this is used for the navigation.

	forms.navigation.submitButton

	In forms this is used for the submit button.

Forms and sections can have their labels translated using this, where where {identifier} is the identifier
of the page or section itself:

	forms.pages.{identifier}.label

	The label used for a form page.

	forms.sections.{identifier}.label

	The label used for a form section.

The actual elements of a form have their id constructed by appending one of the following to
forms.elements.{identifier}., where {identifier} is the identifier of the form element
itself:

	label

	The label for an element.

	placeholder

	The placeholder for an element, if applicable.

	description

	dkjsadhsajk

	text

	The text of a StaticText element.

	confirmationLabel

	Used in the PasswordWithConfirmation element.

	passwordDescription

	Used in the PasswordWithConfirmation element.

The labels of radio buttons and select field options can be translated using the following schema,
where {identifier} is the identifier of the form element itself and value is the value assigned
to the option:

	forms.elements.{identifier}.options.{value}

	Used to translate labels of radio buttons and select field entries.

Complete example

This is the example form used elsewhere in this documentation:

	
	Contact Form (Form)

	
	
	Page 01 (Page)

	
	Name (Single-line Text)

	Email (Single-line Text)

	Message (Multi-line Text)

Assume it is configured like this using YAML:

type: 'Neos.Form:Form'
identifier: 'contact'
label: 'Contact form'
renderables:
 -
 type: 'Neos.Form:Page'
 identifier: 'page-one'
 renderables:
 -
 type: 'Neos.Form:SingleLineText'
 identifier: name
 label: 'Name'
 validators:
 - identifier: 'Neos.Flow:NotEmpty'
 properties:
 placeholder: 'Please enter your full name'
 -
 type: 'Neos.Form:SingleLineText'
 identifier: email
 label: 'Email'
 validators:
 - identifier: 'Neos.Flow:NotEmpty'
 - identifier: 'Neos.Flow:EmailAddress'
 properties:
 placeholder: 'Enter a valid email address'
 -
 type: 'Neos.Form:MultiLineText'
 identifier: message
 label: 'Message'
 validators:
 - identifier: 'Neos.Flow:NotEmpty'
 properties:
 placeholder: 'Enter your message here'

Note

You may leave out label and placeholder if you use id-based matching for the translation.
Be aware though, that you will get empty labels and placeholders in case the translation fails or is not
available.

The following XLIFF would allow to translate the form:

<?xml version="1.0" encoding="UTF-8"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file original="" product-name="Neos.Form" source-language="en" datatype="plaintext">
 <body>
 <trans-unit id="forms.navigation.previousPage" xml:space="preserve">
 <source>Previous page</source>
 </trans-unit>
 <trans-unit id="forms.navigation.nextPage" xml:space="preserve">
 <source>Next page</source>
 </trans-unit>
 <trans-unit id="forms.navigation.submit" xml:space="preserve">
 <source>Submit</source>
 </trans-unit>

 <trans-unit id="forms.pages.page-one" xml:space="preserve">
 <source>Submit</source>
 </trans-unit>

 <trans-unit id="forms.elements.name.label" xml:space="preserve">
 <source>Name</source>
 </trans-unit>
 <trans-unit id="forms.elements.name.placeholder" xml:space="preserve">
 <source>Please enter your full name</source>
 </trans-unit>

 <trans-unit id="forms.elements.email.label" xml:space="preserve">
 <source>Email</source>
 </trans-unit>
 <trans-unit id="forms.elements.email.placeholder" xml:space="preserve">
 <source>Enter a valid email address</source>
 </trans-unit>

 <trans-unit id="forms.elements.message.label" xml:space="preserve">
 <source>Message</source>
 </trans-unit>
 <trans-unit id="forms.elements.message.placeholder" xml:space="preserve">
 <source>Enter your message here</source>
 </trans-unit>
 </body>
 </file>
</xliff>

Copy it to your target language and add the target-language attribute as well as the needed
<target>…</target> entries.

Extending Form API

After working through this guide, you will have learned:

	how to create custom PHP based Form Element implementations

	how to create a custom Form Element renderer

Generally, this guide answers the question: How can the form output be modified with programming?

Custom PHP-based Form Elements

In the previous guides you have learned how to create custom Form Elements without writing a
single line of PHP. While this is sufficient for most cases where you mainly want to change
the visual representation or create a specialized version of an already existing element,
there are situations where you want to adjust the Server-side behavior of an element.
This is where you want to get your hands dirty and create custom Form Element implementations.
Examples for such custom Form Elements are:

	A DatePicker that converts the input to a DateTime object

	A File upload that validates and converts an uploaded file to a PersistentResource

	A Captcha image

A Form Element must implement the FormElementInterface interface located in
Neos.Form/Classes/Core/Model/FormElementInterface.php.

Tip

Usually you want to extend the provided AbstractFormElement which already implements
most of the methods of the interface.

Most commonly you create custom Form elements in order to preconfigure the so called Processing Rule
which defines validation and property mapping instructions for an element.
Lets have a look at the DatePicker Form Element located in Neos.Form/Classes/FormElements/DatePicker.php:

class DatePicker extends \Neos\Form\Core\Model\AbstractFormElement {
 public function initializeFormElement() {
 $this->setDataType('DateTime');
 }
}

The method initializeFormElement() is called whenever a Form Element is added to a form.
In this example, we only set the target data type to a DateTime object. This way, property
mapping and type conversion using the registered TypeConverters is automatically triggered.

Besides being able to modify the Form Element configuration during initialization you can also
implement the callbacks beforeRendering() or/and onSubmit() in order to adjust the behavior
or representation of the element at runtime.
Lets create a new Form Element that is required only if another form field has been specified (for
example a “subscribe to newsletter” checkbox that requires you to provide an email address if checked).
For this create a new PHP class at Your.Package/Classes/FormElements/ConditionalRequired.php:

namespace Your\Package\FormElements;

class ConditionalRequired extends \Neos\Form\Core\Model\AbstractFormElement {

 /**
 * Executed before the current element is outputted to the client
 *
 * @param \Neos\Form\Core\Runtime\FormRuntime $formRuntime
 * @return void
 */
 public function beforeRendering(\Neos\Form\Core\Runtime\FormRuntime $formRuntime) {
 $this->requireIfTriggerIsSet($formRuntime->getFormState());
 }

 /**
 * Executed after the page containing the current element has been submitted
 *
 * @param \Neos\Form\Core\Runtime\FormRuntime $formRuntime
 * @param mixed $elementValue raw value of the submitted element
 * @return void
 */
 public function onSubmit(\Neos\Form\Core\Runtime\FormRuntime $formRuntime, &$elementValue) {
 $this->requireIfTriggerIsSet($formRuntime->getFormState());
 }

 /**
 * Adds a NotEmptyValidator to the current element if the "trigger" value is not empty.
 * The trigger can be configured with $this->properties['triggerPropertyPath']
 *
 * @param \Neos\Form\Core\Runtime\FormState $formState
 * @return void
 */
 protected function requireIfTriggerIsSet(\Neos\Form\Core\Runtime\FormState $formState) {
 if (!isset($this->properties['triggerPropertyPath'])) {
 return;
 }
 $triggerValue = $formState->getFormValue($this->properties['triggerPropertyPath']);
 if ($triggerValue === NULL || $triggerValue === '') {
 return;
 }
 $this->addValidator(new \Neos\Flow\Validation\Validator\NotEmptyValidator());
 }
}

beforeRendering() is invoked just before a Form Element is actually outputted to the client.
It receives a reference to the current FormRuntime making it possible to access previously
submitted values.

onSubmit() is called whenever the page containing the current Form Element is submitted. to the
server. In addition to the FormRuntime this callback also gets passed a reference to the raw value
of the submitted element value before property mapping and validation rules were applied.

In order to use the new Form Element type you first have to extend the Form Definition and specify the
implementationClassName option:

Neos:
 Form:
 presets:
 somePreset:
 # ...
 formElementTypes:
 'Neos.FormExample:ConditionalRequired':
 superTypes:
 'Neos.Form:FormElement': TRUE
 implementationClassName: 'Neos\FormExample\FormElements\ConditionalRequired'
 renderingOptions:
 templatePathPattern: 'resource://Neos.Form/Private/Form/SingleLineText.html'

This makes the new Form Element Neos.FormExample:ConditionalRequired available in the preset
somePreset and you can use it as follows:

$form = new FormDefinition('myForm', $formDefaults);

$page1 = $form->createPage('page1');

$newsletter = $page1->createElement('newsletter', 'Neos.Form:Checkbox');
$newsletter->setLabel('Subscribe for Newsletter');

$email = $page1->createElement('email', 'Neos.FormExample:ConditionalRequired');
$email->setLabel('E-Mail');
$email->setProperty('triggerPropertyPath', 'newsletter');

The line $email->setProperty('triggerPropertyPath', 'newsletter'); makes the email Form Element
required depending on the value of the newsletter element.

This example is really simple but it demonstrates how you can profoundly interact with the Form handling
at every level.

Custom Form Element Renderers

By default a form and all its elements are rendered with the FluidFormRenderer which is a specialized
version of the Fluid TemplateView. For each renderable Form Element there exists an corresponding Fluid
template.
The template path can be changed for all or specific Form Elements as well as layout and partial paths, so
the default renderer is flexible enough to cover most scenarios. However if you want to use your own templating
engine or don’t want to render HTML forms at all (think of Flash or CLI based forms) you can implement your
own Renderer and use it either for the complete form or for certain Form Elements.

As a basic example we want to implement a ListRenderer that simply outputs specified items as unordered
list. A Form Element Renderer must implement the RendererInterface interface located in
Neos.Form/Classes/Core/Renderer/RendererInterface.php and usually you want to extend the provided
AbstractRenderer which already implements most of the methods of the interface:

namespace Your\Package\Renderers;

class ListRenderer extends \Neos\Form\Core\Renderer\AbstractElementRenderer {

 /**
 * @param \Neos\Form\Core\Model\Renderable\RootRenderableInterface $renderable
 * @return string
 */
 public function renderRenderable(\Neos\Form\Core\Model\Renderable\RootRenderableInterface $renderable) {
 $renderable->beforeRendering($this->formRuntime);
 $items = array();
 if ($renderable instanceof \Neos\Form\Core\Model\FormElementInterface) {
 $elementProperties = $renderable->getProperties();
 if (isset($elementProperties['items'])) {
 $items = $elementProperties['items'];
 }
 }
 $content = sprintf('<h3>%s</h3>', htmlspecialchars($renderable->getLabel()));
 $content .= '';
 foreach ($items as $item) {
 $content .= sprintf('%s', htmlspecialchars($item));
 }
 $content .= '';
 $content = $this->formRuntime->invokeRenderCallbacks($content, $renderable);
 return $content;
 }
}

Note

Don’t forget to invoke RootRenderableInterface::beforeRendering() and FormRuntime::invokeRenderCallbacks()
as shown above.

Tip

If you write your own Renderer make sure to sanitize values with htmlspecialchars() before outputting
them to prevent invalid HTML and XSS vulnerabilities.

Make sure to have a look at the `FusionRenderer Package<https://packagist.org/packages/neos/form-fusionrenderer>`_ that
provides Fusion based rendering for arbitrary Form Elements!

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/NeosFormBuilder.png
+ S © A o=

earch Q Filter

@ Neos Demo Site

 Home

[Features

L]

B Try me

[Download

Metamenu

i The book

B Member area
I Subpage

Contact Form
& Content Collection (main)
= Form

Elements (elements)
» @ name
» @ email

@

Download

(real) / Cont:

Name

Your name

il Address*

dre

Comment*

your comn

Download Contrib

Powered by Neos & Flow
Is that the footer?
asd

Contact F

The book

Documentation

Try me

English (US) ¥

-3

N selected element.

@ comment

@ Form Element options

Identifier (optional)

comment

Label

Comment

B Required field

Placeholder text

your comment

O More Element options

Default value

_images/YamlFormBuilder.png
Form Builder - Contact Form

STRUCTURE
© Contact Form (Form)
B g form
(]
@ email
B @ sectiont

.

[Framevorks

B tanguages
e
[s

INSERT ELEMENTS

@ Single-Line Text
@ Multi-Line Text

© Single Checkbox
[single Select (Dropdowm)

[E single Select (Radicbuttons)
[Multple Select (Dropdovm)
[Muttiple Selact (Chackboxas)

B Date Picker
@ File Upload
B 1mage Upload

Static Text

8 Section (Fieldset)
B Page
i Preview Page

Interests:

Frameworks

Comment

[Zend Framework

Bootstrap B Qerevew & Save
L

p— o

wabe

Plceholder

octoutvoive:

Required:

required field

Selecta validatorto add =

_images/structure.png
Loading / saving a form definition

‘Build up a FormDefinition ArfayFormFaciony Save and load forms; used by the Form
object, and retum it S Torm factory can Buld 3 or Builder to asplay a st of forms, and to

tom an array of the format which load and save them.
the FormBuilder understands.

<<saieaios>

! Defining a form Rendering a form

y <coreates>>
Form Defilon Form Aunime
Diormain Model of e for. Reprasents he current Sate
ofthe form wi al the
Submited values. You can use
“AFinisher s execied once a e e
o s complealyfled wih ke an ary
. data and fnally submited. -
N
Page | §
Onlyore pag of a o s 8
displayedat once Lo Processmgrue ¥
ApHazeSsing Ul Contains '
- ‘property mapping and Renderer
} valdaton s fo a partof the Render & FarmDefilon, 8 PAG 07a
form. Form Element.
Iy
FIuid Forim Renderer
DefaU randerer, WHch uses & FIUd
{emplte o render the form
Section
SECHo Tnplemeis a
,,,,.,m,,,k,"g,,w,,,,g of ‘Base class for custom PHP based
form efements. Thus, renderers.
shares characteisics from
both a Page (because thas
both 2 Page because N —
FormElement (because it Legend
appears inside a page).

every class with orange background is a defined extension point.

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Flow Form Framework 5.0 Documentation

 		
 Quickstart

 		
 API Overview

 		
 Anatomy of a Form

 		
 Create your first form

 		
 Render a form

 		
 Validation

 		
 Finishers

 		
 Summary

 		
 Next Steps

 		
 Configuring form rendering with YAML

 		
 Setup

 		
 Form configuration

 		
 File Uploads

 		
 Adjusting Form Output

 		
 Presets Explained

 		
 Form Element Types Explained

 		
 Supertypes

 		
 Creating a Custom Preset

 		
 Adjusting a Form Element Template

 		
 Changing The Form Layout

 		
 Creating a New Form Element

 		
 Translating Forms

 		
 Configuration

 		
 XLIFF files

 		
 Complete example

 		
 Extending Form API

 		
 Custom PHP-based Form Elements

 		
 Custom Form Element Renderers

_static/up.png

_static/up-pressed.png

