

Flow Form Framework 1.2 Documentation

This documentation covering version 1.2 has been rendered at: May 17, 2019

Forms

The Form API is an extensible and flexible framework to build web forms.

It includes the following features:

	Ready-to-use standard form elements based on the Twitter Bootstrap CSS framework [http://twitter.github.com/bootstrap/]

	Creation of Multi-Step Forms

	Server- and Client-Side Validation

	highly flexible rendering of form elements, based on Fluid

	Extensible with new form elements

	robust, object oriented API

	great integration into TYPO3 Flow

Furthermore, we built a Form Builder which is a web application for graphically
assembling and modifying forms, displayed below:

[image: _images/FormBuilder.png]

About This Documentation

This documentation contains a number of tutorial-style guides which will explain
various aspects of the Form API and the Form Framework. It is not intended as in-depth
reference, although there will be links to the in-depth API reference at various points.

	Quickstart
	API Overview

	Anatomy of a Form

	Create your first form

	Render a form

	Validation

	Finishers

	Summary

	Next Steps

	Adjusting Form Output
	Presets Explained

	Form Element Types Explained

	Supertypes

	Creating a Custom Preset

	Adjusting a Form Element Template

	Changing The Form Layout

	Creating a New Form Element

	Extending Form API
	Custom PHP-based Form Elements

	Custom Form Element Renderers

	Configuring Form Builder
	Adding a New Form Element Inside “Create Elements”

	Creating a New Form Element Group

	Setting Default Values for Form Elements

	Marking Validators and Finishers As Required

	Finishing Up

	Extending Form Builder
	Adjusting the Form Builder with Custom CSS

	Overriding Form Builder Handlebars Template

	Creating a Custom Editor

	Creating a Finisher Editor

Credits

This work has been generously sponsored by AKOM360 - Multi Channel Marketing [http://akom360.de].

It has been implemented by:

	Sebastian Kurfürst, sandstorm|media [http://sandstorm-media.de]

	Bastian Waidelich, wwwision [http://wwwision.de]

Quickstart

After working through this guide, you will have learned:

	the structure of a form

	creating a form using the API

	rendering a form

	adding validation rules

	invoking actions after the form is finished

API Overview

The image below shows the high-level API overview of the this package.

First, we will dive into the API part defining a form, and then go over to
rendering a form. In later chapters, we will also show how loading / saving
a form definition works.

[image: _images/structure.png]

Anatomy of a Form

A form is described by the so-called FormDefinition [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html], which is a container object
for the form that consists of one or more Pages in which the actual FormElements are located.

As an example, let’s take a basic contact form with the following structure:

	
	Contact Form (Form)

	
	
	Page 01 (Page)

	
	Name (Single-line Text)

	Email (Single-line Text)

	Message (Multi-line Text)

Our form just has a single page that contains three input fields: Name, Email
and Message.

Note

Every form needs to have at least one page.

Further Information

In-depth information about the form structure can be found in the
FormDefinition [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html] API Documentation.

Create your first form

Now, let’s try to create the basic contact form from above.
For this we need to implement a so-called FormFactory [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Factory.AbstractFormFactory.html],
which is responsible for creating the form. The skeleton for building a form
looks as follows:

namespace Your\Package;

use TYPO3\Flow\Annotations as Flow;
use TYPO3\Form\Core\Model\FormDefinition;

class QuickstartFactory extends \TYPO3\Form\Factory\AbstractFormFactory {

 /**
 * @param array $factorySpecificConfiguration
 * @param string $presetName
 * @return \TYPO3\Form\Core\Model\FormDefinition
 */
 public function build(array $factorySpecificConfiguration, $presetName) {
 $formConfiguration = $this->getPresetConfiguration($presetName);
 $form = new FormDefinition('yourFormIdentifier', $formConfiguration);
 // Now, build your form here
 return $form;
 }
}

As you can see there is the build() method that you have to implement; and this method
needs to return the FormDefinition [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html].

Lets add the one page and input fields for name, email and message of our contact form:

public function build(array $factorySpecificConfiguration, $presetName) {
 $formConfiguration = $this->getPresetConfiguration($presetName);
 $form = new FormDefinition('contactForm', $formConfiguration);

 $page1 = $form->createPage('page1');

 $name = $page1->createElement('name', 'TYPO3.Form:SingleLineText');
 $name->setLabel('Name');

 $email = $page1->createElement('email', 'TYPO3.Form:SingleLineText');
 $email->setLabel('Email');

 $comments = $page1->createElement('message', 'TYPO3.Form:MultiLineText');
 $comments->setLabel('Message');

 return $form;
}

You see that we used the API method createPage($identifier), which creates a new page inside
the form object and returns it for further use. Then, we used createElement($identifier, $type)
to create the form elements and set some options on them.

The $identifier is used to identify a form element, thus it needs to be unique
across the whole form. $type references an Element Type.

Note

By default the $identifier is part of the id attribute of the rendered Form Element so it should be lowerCamelCased and must not contain special characters.

Tip

As you will learn in the next guide, you can define your own Element Types easily.
The element types referenced above (TYPO3.Form:SingleLineText and TYPO3.Form:MultiLineText)
are just element types which are delivered by default by the framework.

Render a form

Now that we have created the first FormDefinition how can we display the actual form?
That is really easy with the provided form:render [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.ViewHelpers.RenderViewHelper.html] ViewHelper:

{namespace form=TYPO3\Form\ViewHelpers}
<form:render factoryClass="Your\Package\YourFactory" />

If you put that snippet in your Fluid template and replace YourPackage with your package
namespace and YourFactory with the class name of the previously generated form factory,
you should see a form consisting of the three text fields and a submit button.

But as you can see, none of the fields are required and the email address is not
verified. So let’s add some basic validation rules:

Validation

Every FormElement [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.AbstractFormElement.html] implements the FormElementInterface [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormElementInterface.html]
which provides a convenient way to work with TYPO3 Flow validators:

$name->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());

$email->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());
$email->addValidator(new \TYPO3\Flow\Validation\Validator\EmailAddressValidator());

$comments->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());
$comments->addValidator(new \TYPO3\Flow\Validation\Validator\StringLengthValidator(array('minimum' => 3)));

With the addValidator($validator) method you can attach one or more validators to a form element.
If you save the changes and reload the page where you embedded the form, you can see that
all text fields are required now, that the email address is syntactically verified and that
you need to write a message of at least 3 characters. If you try to submit the form with
invalid data, validation errors are displayed next to each erroneous field.

If you do enter name, a valid email address and a message you can submit the
form - and see a blank page. That’s where so called Finishers come into play.

Finishers

A Finisher [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FinisherInterface.html] is a piece of PHP code that is executed
as soon as a form has been successfully submitted (if the last page has been sent
and no validation errors occurred).

You can attach multiple finishers to a form.

For this example we might want to send the data to an email address, and we can use
the EmailFinisher [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Finishers.EmailFinisher.html] for that:

$emailFinisher = new \TYPO3\Form\Finishers\EmailFinisher();
$emailFinisher->setOptions(array(
 'templatePathAndFilename' => 'resource://Your.Package/Private/Templates/ContactForm/NotificationEmail.txt',
 'recipientAddress' => 'your@example.com',
 'senderAddress' => 'mailer@example.com',
 'replyToAddress' => '{email}',
 'subject' => 'Contact Request',
 'format' => \TYPO3\Form\Finishers\EmailFinisher::FORMAT_PLAINTEXT
));
$form->addFinisher($emailFinisher);

And afterwards we want to redirect the user to some confirmation action, thus
we add the RedirectFinisher [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Finishers.RedirectFinisher.html]:

$redirectFinisher = new \TYPO3\Form\Finishers\RedirectFinisher();
$redirectFinisher->setOptions(
 array('action' => 'confirmation')
);
$form->addFinisher($redirectFinisher);

Summary

That’s it for the quickstart. The complete code of your form factory should look something like this now:

namespace Your\Package;

use TYPO3\Flow\Annotations as Flow;
use TYPO3\Form\Core\Model\FormDefinition;

/**
 * Flow\Scope("singleton")
 */
class QuickstartFactory extends \TYPO3\Form\Factory\AbstractFormFactory {

 /**
 * @param array $factorySpecificConfiguration
 * @param string $presetName
 * @return \TYPO3\Form\Core\Model\FormDefinition
 */
 public function build(array $factorySpecificConfiguration, $presetName) {
 $formConfiguration = $this->getPresetConfiguration($presetName);
 $form = new FormDefinition('contactForm', $formConfiguration);

 $page1 = $form->createPage('page1');

 $name = $page1->createElement('name', 'TYPO3.Form:SingleLineText');
 $name->setLabel('Name');
 $name->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());

 $email = $page1->createElement('email', 'TYPO3.Form:SingleLineText');
 $email->setLabel('Email');
 $email->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());
 $email->addValidator(new \TYPO3\Flow\Validation\Validator\EmailAddressValidator());

 $comments = $page1->createElement('message', 'TYPO3.Form:MultiLineText');
 $comments->setLabel('Message');
 $comments->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());
 $comments->addValidator(new \TYPO3\Flow\Validation\Validator\StringLengthValidator(array('minimum' => 3)));

 $emailFinisher = new \TYPO3\Form\Finishers\EmailFinisher();
 $emailFinisher->setOptions(array(
 'templatePathAndFilename' => 'resource://Your.Package/Private/Templates/ContactForm/NotificationEmail.txt',
 'recipientAddress' => 'your@example.com',
 'senderAddress' => 'mailer@example.com',
 'replyToAddress' => '{email}',
 'subject' => 'Contact Request',
 'format' => \TYPO3\Form\Finishers\EmailFinisher::FORMAT_PLAINTEXT
));
 $form->addFinisher($emailFinisher);

 $redirectFinisher = new \TYPO3\Form\Finishers\RedirectFinisher();
 $redirectFinisher->setOptions(
 array('action' => 'confirmation')
);
 $form->addFinisher($redirectFinisher);

 return $form;
 }
}

Next Steps

Now, you know how to build forms using the API. In the next tutorial, you will learn how to
adjust the form output and create new form elements – all without programming!

Continue with: Adjusting Form Output

Adjusting Form Output

After working through this guide, you will have learned:

	how to adjust the form output

	how to create custom Form Presets

	how to create custom form elements

Generally, this guide answers the question: How can form output be modified without programming?

Presets Explained

In the Quickstart guide, you have seen how a basic form can be built. We
will now dissect the form element creation a little more, and explain the lines
which you might not have understood yet.

Let’s have a look at the boilerplate code inside the form factory again:

public function build(array $factorySpecificConfiguration, $presetName) {
 $formConfiguration = $this->getPresetConfiguration($presetName);
 $form = new FormDefinition('contactForm', $formConfiguration);
 // ...
}

You see that the second parameter is a $presetName which is passed to
getPresetConfiguration(). So, let’s introduce the concept of presets now.

A Preset is a container for pre-defined form configuration, and is the basic
way to adjust the form’s output. Presets are defined inside the Settings.yaml
file, like in the following example:

TYPO3:
 Form:
 presets:
 preset1:
 title: 'My First Preset'
 formElementTypes:
 'TYPO3.Form:SingleLineTextfield':
 # configuration for the single line textfield
 preset2:
 title: 'My Second Preset'
 parentPreset: 'preset1'
 # because preset2 *inherits* from preset1, only the changes between
 # preset1 and preset2 need to be defined here.

The above example defines two presets (preset1 and preset2). Because
preset2 defines a parentPreset, it inherits all options from preset1
if not specified otherwise.

Tip

The TYPO3.Form package already defines a preset with the name default
which contains all standard form elements. Look into TYPO3.Form/Configuration/Settings.yaml
for the details on the defined form elements.

In most cases, you will create a sub-preset of the default preset, modifying
only the parts you need.

The method getPresetConfiguration($presetName) in AbstractFormFactory [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Factory.AbstractFormFactory.html]
evaluates the preset inheritance hierarchy and returns a merged array of the preset
configuration.

Form Element Types Explained

Now that we have seen that presets can inherit from each other, let’s look inside
the preset configuration. One particularily important part of each preset configuration
is the form element type definition, which configures each form element correctly.

As an example, let’s create a text field with the following snippet:

$name = $page1->createElement('name', 'TYPO3.Form:SingleLineText');
$name->setLabel('Name');

In the above example, the form element type is TYPO3.Form:SingleLineText, and
when creating the form element, it applies all default values being set inside
the form element type. As an example, take the following type definition:

'TYPO3.Form:SingleLineText':
 defaultValue: 'My Default Text'
 properties:
 placeholder: 'My Placeholder Text'

That’s exactly the same as if one wrote the following PHP code:

$name->setDefaultValue('My Default Text');
$name->setProperty('placeholder', 'My Placeholder Text');

So $page->createElement($identifier, $formElementType) is essentially a very
specialized factory method, which automatically applies the default values from
the form element definition on the newly created form object before returning it.

Tip

The defaults are not only applied on single form elements, but also
on the FormDefinition and Page objects. The FormDefinition object has, by
convention, the form element type TYPO3.Form:Form, but you can also
override it by passing the to-be-used type as third parameter to the
constructor of FormDefinition [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html].

A page has, by default, the form element type TYPO3.Form:Page, and you can
override it by supplying a second parameter to the createPage() method of
FormDefinition [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html].

Supertypes

Now, there’s one more secret ingredient which makes the form framework powerful:
Every form element type can have one or multiple supertypes; and this
allows to only specify the differences between the “parent” form element and
the newly created one, effectively creating an inheritance hierarchy of form elements.

The following example demonstrates this:

'TYPO3.Form:SingleLineText':
 defaultValue: 'My Default Text'
 properties:
 placeholder: 'My Placeholder Text'
'TYPO3.Form:SpecialText':
 superTypes: ['TYPO3.Form:SingleLineText']
 defaultValue: 'My special text'

Here, the SpecialText inherits the placeholder property from the SingleLineText
and only overrides the default value.

Together, presets (with parent presets) and form element types (with supertypes)
form a very flexible foundation to customize the rendering in any imaginable way,
as we will explore in the remainder of this guide.

Note

If multiple super types are specified, they are evaluated from left to right, i.e.
later super types override previous definitions.

Creating a Custom Preset

First, we create a sub-preset inheriting from the default preset. For that,
open up Your.Package/Configuration/Settings.yaml and insert the following
contents:

TYPO3:
 Form:
 presets:
 myCustom:
 title: 'Custom Elements'
 parentPreset: 'default'

You now created a sub preset named myCustom which behaves exactly the same as
the default preset. If you now specify the preset name inside the <form:render>
ViewHelper you will not see any differences yet:

<form:render factoryClass="..." presetName="myCustom" />

Now we are set up to modify the custom preset, and can adjust the form output.

Adjusting a Form Element Template

The templates of the default Form Elements are located in TYPO3.Form/Resources/Private/Form/.
They are standard Fluid templates and most of them are really simple. Open up the
Single-Line Text template for example:

<f:layout name="TYPO3.Form:Field" />
<f:section name="field">
 <f:form.textfield property="{element.identifier}" id="{element.uniqueIdentifier}"
 placeholder="{element.properties.placeholder}" errorClass="error" />
</f:section>

As you can see, the Form Element templates use layouts in order to reduce duplicated markup.

Tip

The Fluid Form Renderer expects layout and partial names in the format <PackageKey>:<Name>.
That makes it possible to reference layouts and partials from other packages!

We’ll see how to change the layout in the next section. For now let’s try to simply change the
class attribute of the SingleLineText element.

For that, copy the default template to Your.Package/Private/Resources/CustomElements/SingleLineText.html
and adjust it as follows:

<f:layout name="TYPO3.Form:Field" />
<f:section name="field">
 <f:form.textfield property="{element.identifier}" id="{element.uniqueIdentifier}"
 placeholder="{element.properties.placeholder}" errorClass="error"
 class="customClass" />
</f:section>

Now, you only need to tell the framework to use your newly created template instead of the default one.
This can be archieved by overriding the rendering option templatePathPattern in the form element
type definition.

Adjust Your.Package/Configuration/Settings.yaml accordingly:

TYPO3:
 Form:
 presets:
 myCustom:
 title: 'Custom Elements'
 parentPreset: 'default'
 formElementTypes:
 'TYPO3.Form:SingleLineText':
 renderingOptions:
 templatePathPattern: 'resource://Your.Package/Private/CustomElements/SingleLineText.html'

Now, all Single-Line Text elements will have a class attribute of customClass
when using the myCustom preset.

A more realistic use-case would be to change the arrangement of form elements. Read on to see how you can easily change the
layout of a form.

Changing The Form Layout

By default, validation errors are rendered next to each form element. Imagine you want to render validation errors of the
current page above the form instead. For this you need to adjust the previously mentioned field layout.

The provided default field layout located in TYPO3.Form/Resources/Private/Form/Layouts/Field.html is a bit more verbose
as it renders the label, validation errors and an asterisk if the element is required (we slightly reformatted the template
here to improve readability):

{namespace form=TYPO3\Form\ViewHelpers}
<f:form.validationResults for="{element.identifier}">
 <!-- wrapping div for the form element; contains an identifier for the form element if we are
 in preview mode -->
 <div class="clearfix{f:if(condition: validationResults.flattenedErrors, then: ' error')}"
 <f:if condition="{element.rootForm.renderingOptions.previewMode}">
 data-element="{form:form.formElementRootlinePath(renderable:element)}"
 </f:if>
 >
 <!-- Label for the form element, and required indicator -->
 <label for="{element.uniqueIdentifier}">{element.label -> f:format.nl2br()}
 <f:if condition="{element.required}">
 <f:render partial="TYPO3.Form:Field/Required" />
 </f:if>
 </label>

 <!-- the actual form element -->
 <div class="input">
 <f:render section="field" />

 <!-- validation errors -->
 <f:if condition="{validationResults.flattenedErrors}">

 <f:for each="{validationResults.errors}" as="error">
 {error -> f:translate(id: error.code, arguments: error.arguments,
 package: 'TYPO3.Form', source: 'ValidationErrors')}

 </f:for>

 </f:if>
 </div>
 </div>
</f:form.validationResults>

Copy the layout file to Your.Package/Private/Resources/CustomElements/Layouts/Field.html and remove the validation related lines:

{namespace form=TYPO3\Form\ViewHelpers}
<f:form.validationResults for="{element.identifier}">
 <!-- wrapping div for the form element; contains an identifier for the form element if we are
 in preview mode -->
 <div class="clearfix{f:if(condition: validationResults.flattenedErrors, then: ' error')}"
 <f:if condition="{element.rootForm.renderingOptions.previewMode}">
 data-element="{form:form.formElementRootlinePath(renderable:element)}"
 </f:if>
 >
 <!-- Label for the form element, and required indicator -->
 <label for="{element.uniqueIdentifier}">{element.label -> f:format.nl2br()}
 <f:if condition="{element.required}">
 <f:render partial="TYPO3.Form:Field/Required" />
 </f:if>
 </label>

 <!-- the actual form element -->
 <div class="input">
 <f:render section="field" />
 </div>
 </div>
</f:form.validationResults>

Additionally you need to adjust the default form template located in TYPO3.Form/Resources/Private/Form/Form.html (remember
that a FormDefinition [http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html] also has a form element type, by default of TYPO3.Form:Form), which looks
as follows by default:

{namespace form=TYPO3\Form\ViewHelpers}
<form:form object="{form}" action="index" method="post" id="{form.identifier}"
 enctype="multipart/form-data">
 <form:renderRenderable renderable="{form.currentPage}" />
 <div class="actions">
 <f:render partial="TYPO3.Form:Form/Navigation" arguments="{form: form}" />
 </div>
</form:form>

Copy this template file to Your.Package/Private/Resources/CustomElements/Form.html and add the validation result
rendering:

{namespace form=TYPO3\Form\ViewHelpers}
<form:form object="{form}" action="index" method="post" id="{form.identifier}"
 enctype="multipart/form-data">
 <f:form.validationResults>
 <f:if condition="{validationResults.flattenedErrors}">
 <ul class="error">
 <f:for each="{validationResults.flattenedErrors}" as="elementErrors"
 key="elementIdentifier" reverse="true">

 {elementIdentifier}:

 <f:for each="{elementErrors}" as="error">
 {error}
 </f:for>

 </f:for>

 </f:if>
 </f:form.validationResults>
 <form:renderRenderable renderable="{form.currentPage}" />
 <div class="actions">
 <f:render partial="TYPO3.Form:Form/Navigation" arguments="{form: form}" />
 </div>
</form:form>

Now, you only need to adjust the form definition in order to use the new templates:

TYPO3:
 Form:
 presets:
 ########### CUSTOM PRESETS ###########

 myCustom:
 title: 'Custom Elements'
 parentPreset: 'default'
 formElementTypes:

 # ...

 ### override template path of TYPO3.Form:Form ###
 'TYPO3.Form:Form':
 renderingOptions:
 templatePathPattern: 'resource://TYPO3.FormExample/Private/CustomElements/Form.html'

 ### override default layout path ###
 'TYPO3.Form:Base':
 renderingOptions:
 layoutPathPattern: 'resource://TYPO3.FormExample/Private/CustomElements/Layouts/{@type}.html'

Tip

You can use placeholders in templatePathPattern, partialPathPattern and layoutPathPattern:
{@package} will be replaced by the package key and {@type} by the current form element type
without namespace. A small example shall illustrate this:

If the form element type is Your.Package:FooBar, then {@package} is replaced by Your.Package,
and {@type} is replaced by FooBar. As partials and layouts inside form elements are also specified
using the Package:Type notation, this replacement also works for partials and layouts.

Creating a New Form Element

With the Form Framework it is really easy to create additional Form Element types.
Lets say you want to create a specialized version of the TYPO3.Form:SingleSelectRadiobuttons that already provides
two radio buttons for Female and Male. That’s just a matter of a few lines of yaml:

TYPO3:
 Form:
 presets:
 ########### CUSTOM PRESETS ###########

 myCustom:
 title: 'Custom Elements'
 parentPreset: 'default'
 formElementTypes:

 # ...

 'Your.Package:GenderSelect':
 superTypes: ['TYPO3.Form:SingleSelectRadiobuttons']
 renderingOptions:
 templatePathPattern: 'resource://TYPO3.Form/Private/Form/SingleSelectRadiobuttons.html'
 properties:
 options:
 f: 'Female'
 m: 'Male'

As you can see, you can easily extend existing Form Element Definitions by specifying the superTypes.

Tip

We have to specify the templatePathPattern because according to the default path pattern
the template would be expected at Your.Package/Private/Resources/Form/GenderSelect.html otherwise.

Note

Form Elements will only be available in the preset they’re defined (and in it’s sub-presets).
Therefore you should consider adding Form Elements in the default preset to make them available for all
Form Definitions extending the default preset.

Extending Form API

After working through this guide, you will have learned:

	how to create custom PHP based Form Element implementations

	how to create a custom Form Element renderer

Generally, this guide answers the question: How can the form output be modified with programming?

Custom PHP-based Form Elements

In the previous guides you have learned how to create custom Form Elements without writing a
single line of PHP. While this is sufficient for most cases where you mainly want to change
the visual representation or create a specialized version of an already existing element,
there are situations where you want to adjust the Server-side behavior of an element.
This is where you want to get your hands dirty and create custom Form Element implementations.
Examples for such custom Form Elements are:

	A DatePicker that converts the input to a DateTime object

	A File upload that validates and converts an uploaded file to a Resource

	A Captcha image

A Form Element must implement the FormElementInterface interface located in
TYPO3.Form/Classes/Core/Model/FormElementInterface.php.

Tip

Usually you want to extend the provided AbstractFormElement which already implements
most of the methods of the interface.

Most commonly you create custom Form elements in order to preconfigure the so called Processing Rule
which defines validation and property mapping instructions for an element.
Lets have a look at the DatePicker Form Element located in TYPO3.Form/Classes/FormElements/DatePicker.php:

class DatePicker extends \TYPO3\Form\Core\Model\AbstractFormElement {
 public function initializeFormElement() {
 $this->setDataType('DateTime');
 }
}

The method initializeFormElement() is called whenever a Form Element is added to a form.
In this example, we only set the target data type to a DateTime object. This way, property
mapping and type conversion using the registered TypeConverters is automatically triggered.

Besides being able to modify the Form Element configuration during initialization you can also
implement the callbacks beforeRendering() or/and onSubmit() in order to adjust the behavior
or representation of the element at runtime.
Lets create a new Form Element that is required only if another form field has been specified (for
example a “subscribe to newsletter” checkbox that requires you to provide an email address if checked).
For this create a new PHP class at Your.Package/Classes/FormElements/ConditionalRequired.php:

namespace Your\Package\FormElements;

class ConditionalRequired extends \TYPO3\Form\Core\Model\AbstractFormElement {

 /**
 * Executed before the current element is outputted to the client
 *
 * @param \TYPO3\Form\Core\Runtime\FormRuntime $formRuntime
 * @return void
 */
 public function beforeRendering(\TYPO3\Form\Core\Runtime\FormRuntime $formRuntime) {
 $this->requireIfTriggerIsSet($formRuntime->getFormState());
 }

 /**
 * Executed after the page containing the current element has been submitted
 *
 * @param \TYPO3\Form\Core\Runtime\FormRuntime $formRuntime
 * @param mixed $elementValue raw value of the submitted element
 * @return void
 */
 public function onSubmit(\TYPO3\Form\Core\Runtime\FormRuntime $formRuntime, &$elementValue) {
 $this->requireIfTriggerIsSet($formRuntime->getFormState());
 }

 /**
 * Adds a NotEmptyValidator to the current element if the "trigger" value is not empty.
 * The trigger can be configured with $this->properties['triggerPropertyPath']
 *
 * @param \TYPO3\Form\Core\Runtime\FormState $formState
 * @return void
 */
 protected function requireIfTriggerIsSet(\TYPO3\Form\Core\Runtime\FormState $formState) {
 if (!isset($this->properties['triggerPropertyPath'])) {
 return;
 }
 $triggerValue = $formState->getFormValue($this->properties['triggerPropertyPath']);
 if ($triggerValue === NULL || $triggerValue === '') {
 return;
 }
 $this->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());
 }
}

beforeRendering() is invoked just before a Form Element is actually outputted to the client.
It receives a reference to the current FormRuntime making it possible to access previously
submitted values.

onSubmit() is called whenever the page containing the current Form Element is submitted. to the
server. In addition to the FormRuntime this callback also gets passed a reference to the raw value
of the submitted element value before property mapping and validation rules were applied.

In order to use the new Form Element type you first have to extend the Form Definition and specify the
implementationClassName option:

TYPO3:
 Form:
 presets:
 somePreset:
 # ...
 formElementTypes:
 'TYPO3.FormExample:ConditionalRequired':
 superTypes: ['TYPO3.Form:FormElement']
 implementationClassName: 'TYPO3\FormExample\FormElements\ConditionalRequired'
 renderingOptions:
 templatePathPattern: 'resource://TYPO3.Form/Private/Form/SingleLineText.html'

This makes the new Form Element TYPO3.FormExample:ConditionalRequired available in the preset
somePreset and you can use it as follows:

$form = new FormDefinition('myForm', $formDefaults);

$page1 = $form->createPage('page1');

$newsletter = $page1->createElement('newsletter', 'TYPO3.Form:Checkbox');
$newsletter->setLabel('Subscribe for Newsletter');

$email = $page1->createElement('email', 'TYPO3.FormExample:ConditionalRequired');
$email->setLabel('E-Mail');
$email->setProperty('triggerPropertyPath', 'newsletter');

The line $email->setProperty('triggerPropertyPath', 'newsletter'); makes the email Form Element
required depending on the value of the newsletter element.

This example is really simple but it demonstrates how you can profoundly interact with the Form handling
at every level.

Custom Form Element Renderers

By default a form and all its elements are rendered with the FluidFormRenderer which is a specialized
version of the Fluid TemplateView. For each renderable Form Element there exists an corresponding Fluid
template.
The template path can be changed for all or specific Form Elements as well as layout and partial paths, so
the default renderer is flexible enough to cover most scenarios. However if you want to use your own templating
engine or don’t want to render HTML forms at all (think of Flash or CLI based forms) you can implement your
own Renderer and use it either for the complete form or for certain Form Elements.

As a basic example we want to implement a ListRenderer that simply outputs specified items as unordered
list. A Form Element Renderer must implement the RendererInterface interface located in
TYPO3.Form/Classes/Core/Renderer/RendererInterface.php and usually you want to extend the provided
AbstractRenderer which already implements most of the methods of the interface:

namespace Your\Package\Renderers;

class ListRenderer extends \TYPO3\Form\Core\Renderer\AbstractElementRenderer {

 /**
 * @param \TYPO3\Form\Core\Model\Renderable\RootRenderableInterface $renderable
 * @return string
 */
 public function renderRenderable(\TYPO3\Form\Core\Model\Renderable\RootRenderableInterface $renderable) {
 $items = array();
 if ($renderable instanceof \TYPO3\Form\Core\Model\FormElementInterface) {
 $elementProperties = $renderable->getProperties();
 if (isset($elementProperties['items'])) {
 $items = $elementProperties['items'];
 }
 }
 $content = sprintf('<h3>%s</h3>', htmlspecialchars($renderable->getLabel()));
 $content .= '';
 foreach ($items as $item) {
 $content .= sprintf('%s', htmlspecialchars($item));
 }
 $content .= '';
 return $content;
 }
}

Tip

If you write your own Renderer make sure to sanitize values with htmlspecialchars() before outputting
them to prevent invalid HTML and XSS vulnerabilities.

Configuring Form Builder

After this guide, you will have learned how to Configure the Form Builder through settings

Adding a New Form Element Inside “Create Elements”

Let’s say you have created your form element, and want to make it available inside the Form Builder. For that, you need some YAML configuration which looks as follows:

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
 'Your.Package:YourFormElement':
 # the definitions for your form element
 formBuilder:
 label: 'Your New Form Element'
 group: custom
 sorting: 200

To determine whether a form element is visible in the Form Builder, you must set formBuilder:group to a valid group. A form element group is used to visually group the available form elements together. In the default profile, the following groups are configured:

	input

	select

	custom

	container

The label is – as you might expect – the human-readable label, while the sorting determines the ordering of form elements inside their form element group.

Creating a New Form Element Group

All form element groups are defined inside formElementGroups inside the preset, so that’s how you can add a new group:

we are now inside TYPO3:Form:presets:[presetName]
formElementGroups:
 specialCustom:
 sorting: 500
 label: 'My special custom group'

For each group, you need to specify a human-readable label, and the sorting (which determines the ordering of the groups).

Setting Default Values for Form Elements

When a form element is created, you can define some default values which are directly set on the form element. As an example, let’s imagine you want to build a ProgrammingLanguageSelect where the user can choose his favorite programming language.

In this case, we want to define some default programming languages, but the integrator who builds the form should be able to add custom options as well. These default options can be set in Settings.yaml using the formBuilder:predefinedDefaults key.

Here follows the full configuration for the ProgrammingLanguageSelect (which is an example taken from the TYPO3.FormExample package):

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
 'TYPO3.FormExample:ProgrammingLanguageSelect':
 superTypes: ['TYPO3.Form:SingleSelectRadiobuttons']
 renderingOptions:
 templatePathPattern: 'resource://TYPO3.Form/Private/Form/SingleSelectRadiobuttons.html'

 # here follow the form builder specific options
 formBuilder:
 group: custom
 label: 'Programming Language Select'

 # we now set some defaults which are applied once the form element is inserted to the form
 predefinedDefaults:
 properties:
 options:
 0:
 _key: 'php'
 _value: 'PHP'
 1:
 _key: 'java'
 _value: 'Java etc'
 2:
 _key: 'js'
 _value: 'JavaScript'

Contrasting Use Case: Gender Selection

Inside Creating a new form element, we have implemented a special Gender Select. Let’s think a second about the differences between the Gender Select and the Programming Language Select examples:

For a Gender select field, the integrator using the form builder does not need to set any options for this form element, as the available choices (Female and Male) are predefined inside the form element template.

In the case of the programming language select, we only want to set some sensible defaults for the integrator, but want him to be able to adjust the values.

Choosing which strategy to use depends mostly on the expected usage patterns:

	In the gender select example, if a new option is added to the list afterwards, this will directly be reflected in all forms which use this input field.

	If you use predefinedDefaults, changing these will be only applied to new elements, but not to already existing elements.

Note

In order to make the gender selection work nicely with the Form Builder,
we should disable the options editor as follows (as the options should not be editable by the implementor):

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
 'TYPO3.FormExample:GenderSelect':
 formBuilder:
 editors:
 # Disable "options" editor
 options: null

Tip

The same distinction between using formBuilder:predefinedDefaults and
the form element type definition directly can also be used to add other elements like
Validators or Finishers.

Marking Validators and Finishers As Required

Sometimes, you want to simplify the Form Builder User Interface and make certain options easier for your users. A frequent use-case is that you want that a certain validator, like the StringLength validator, is always shown in the user interface as it is very often used.

This can be configured as follows:

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
 'TYPO3.Form:TextMixin': # or any other type here
 formBuilder:
 editors:
 validation:
 availableValidators:
 'TYPO3.Flow:StringLength': # or any other validator
 # mark this validator required such that it is always shown.
 required: true

Finishers

The same works for Finishers, for example the following configuration makes the EmailFinisher mandatory:

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
 'TYPO3.Form:Form':
 formBuilder:
 editors:
 finishers:
 availableFinishers:
 'TYPO3.Form:Email': # or any other finisher
 # mark this finisher required such that it is always shown.
 required: true

Finishing Up

You should now have some receipes at hand on how to modify the Form Builder. Read the next chapter for some more advanced help.

Extending Form Builder

After working through this guide, you will have learned:

	How to include custom CSS into the form builder

	How to write a custom finisher editor

	How can the form builder be adjusted

An in-depth reference on how to extend the form builder using custom JavaScript can be found in the start page of the Form Builder
API documentation.

Adjusting the Form Builder with Custom CSS

Let’s say you want to adjust the form builder with a custom CSS file inside Your.Package/Resources/Public/FormBuilderAdjustments.css. Then, you need to tell the form builder to load this additional stylesheet as well. You can do that using an entry inside Settings.yaml of your package which looks as follows:

TYPO3:
 FormBuilder:
 stylesheets:
 customAdjustments:
 files: ['resource://Your.Package/Public/FormBuilderAdjustments.css']
 sorting: 200

Most important is the sorting property, as it defines the order in which the CSS files are included. Every sorting up to 100 is reserved for internal use by the form builder, so you should use sorting numbers above 100 unless you have a good reason to do otherwise.

Tip

Loading additional JavaScript files into the form builder works in the same manner.

Overriding Form Builder Handlebars Template

Let’s say we want to adjust the header of the form builder, such that it displays your company up there as well. For that, we need to modify the default handlebars template for the header area.

Warning

If you modify handlebars templates, you might need to adjust them after a new version of the form builder
has been released! Modification of handlebars templates is useful for unplanned extensibility, but you should only
do it as last resort!

The default template is located inside TYPO3.FormBuilder/Resources/Private/FormBuilderTemplates/Header.html and looks as follows:

<h1>Form Builder - {{TYPO3.FormBuilder.Model.Form.formDefinition.label}}</h1>
{{#if TYPO3.FormBuilder.Model.Form.currentlyLoadingPreview}}
 Loading..
{{/if}}

<ul id="typo3-formbuilder-toolbar">
 <li class="typo3-formbuilder-preset">
 {{view TYPO3.FormBuilder.View.Header.PresetSelector}}

 <li class="typo3-formbuilder-preview">
 {{#view TYPO3.FormBuilder.View.Header.PreviewButton class="typo3-formbuilder-button icon"}}Preview{{/view}}

 <li class="typo3-formbuilder-save">
 {{#view TYPO3.FormBuilder.View.Header.SaveButton class="typo3-formbuilder-button icon"}}Save{{/view}}

We can just copy it to Your.Package/Resources/Private/FormBuilderTemplates/Header.html and adjust it as needed, modifying the part inside the <h1>...</h1> to:

<h1>Your Company Form Builder - {{TYPO3.FormBuilder.Model.Form.formDefinition.label}}</h1>

Then, we need to tell the form builder that we want to use a different handlebars template for the header. For that, we need the following Settings.yaml:

TYPO3:
 FormBuilder:
 handlebarsTemplates:
 Header: resource://Your.Package/Private/FormBuilderTemplates/Header.html

Warning

Make sure that your package is loaded after the FormBuilder package if you want to override such settings.

Creating a Custom Editor

Every form element is edited on the right side of the Form Builder in the element options panel. In order to be flexible and extensible, the element options panel is a container for editors which, as a whole, edit the form element. There are a multitude of predefined editors, ranging from a simple text input field up to a grid widget for editing properties.

All editors for a given form element are defined inside the formElementTypes definition, looking as follows:

we are now inside TYPO3:Form:presets:[presetName]:formElementTypes
'TYPO3.Form:TextMixin':
 formBuilder:
 editors:
 placeholder: # an arbitrary key for identifying the editor instance
 sorting: 200 # the sorting determines the ordering of the different editors inside the element options panel
 viewName: 'JavaScript.View.Class.Name' # the JavaScript view class name which should be used here
 # additionally, you can define view-specific options here
 # here, you can define some more editors.

We will now create a custom editor for rendering a select box, and will add it to the File Upload form element such that a user can choose the file types he allows. The finished editor is part of the standard FormBuilder distribution inside TYPO3.FormBuilder/Resources/Private/CoffeeScript/elementOptionsPanelEditors/basic.coffee.

Note

If you want to create your completely own editor, you need to include the additional JavaScript file. How this is done is explained in detail inside Adjusting the Form Builder with Custom CSS

The Basic Setup

Note

We’ll develop the editor in CoffeeScript [http://coffeescript.org], but you are of course free to also use JavaScript.

We will extend our editor from TYPO3.FormBuilder.View.ElementOptionsPanel.Editor.AbstractPropertyEditor:

TYPO3.FormBuilder.View.ElementOptionsPanel.Editor.SelectEditor = AbstractPropertyEditor.extend {
 templateName: 'ElementOptionsPanel-SelectEditor'
}

Then, we will create a basic handlebars template and register it underneath ElementOptionsPanel-SelectEditor (as described in Overriding Form Builder Handlebars Template). We’ll just copy over an existing editor template and slightly adjust it:

<div class="typo3-formbuilder-controlGroup">
 <label>{{label}}:</label>
 <div class="typo3-formbuilder-controls">
 [select should come here]
 </div>
</div>

Note

Don’t forget to register the handlebars template ElementOptionsPanel-SelectEditor inside your Settings.yaml.

Now that we have all the pieces ready, let’s actually use the editor inside the TYPO3.Form:FileUpload form element:

we are now inside TYPO3:Form:presets:[presetName]:formElementTypes
'TYPO3.Form:FileUpload':
 formBuilder:
 editors:
 allowedExtensions:
 sorting: 200
 viewName: 'TYPO3.FormBuilder.View.ElementOptionsPanel.Editor.SelectEditor'

After reloading the form builder, you will see that the file upload field has a field: [select should come here] displayed inside the element options panel.

Now that we have the basics set up, let’s fill the editor with life by actually implementing it.

Implementing the Editor

Everything inside here is just JavaScript development with EmberJS, using bindings and computed properties. If that sound like chinese to you, head over to the EmberJS [http://emberjs.com] website and read it up.

We somehow need to configure the available options inside the editor, and come up with the following YAML on how we want to configure the file types:

allowedExtensions:
 sorting: 200
 label: 'Allowed File Types'
 propertyPath: 'properties.allowedExtensions'
 viewName: 'TYPO3.FormBuilder.View.ElementOptionsPanel.Editor.SelectEditor'
 availableElements:
 0:
 value: ['doc', 'docx', 'odt', 'pdf']
 label: 'Documents (doc, docx, odt, pdf)'
 1:
 value: ['xls']
 label: 'Spreadsheet documents (xls)'

Furthermore, the above example sets the label and propertyPath options of the element editor. The label is shown in front of the element, and the propertyPath points to the form element option which shall be modified using this editor.

All properties of such an editor definition are made available inside the editor object itself, i.e. the SelectEditor now magically has an availableElements property which we can use inside the Handlebars template to bind the select box options to. Thus, we remove the [select should come here] and replace it with Ember.Select:

{{view Ember.Select contentBinding="availableElements" optionLabelPath="content.label"}}

Now, if we reload, we already see the list of choices being available as a dropdown.

Saving the Selection

Now, we only need to save the selection inside the model again. For that, we bind the current selection to a property in our view using the selectionBinding of the Ember.Select view:

{{view Ember.Select contentBinding="availableElements" optionLabelPath="content.label" selectionBinding="selectedValue"}}

Then, let’s create a computed property selectedValue inside the editor implementation, which updates the value property and triggers the change notification callback @valueChanged():

SelectEditor = AbstractPropertyEditor.extend {
 templateName: 'ElementOptionsPanel-SelectEditor'
 # API: list of available elements to be shown in the select box; each element should have a "label" and a "value".
 availableElements: null

 selectedValue: ((k, v) ->
 if arguments.length >= 2
 # we need to set the value
 @set('value', v.value)
 @valueChanged()

 # get the current value
 for element in @get('availableElements')
 return element if element.value == @get('value')

 # fallback if value not found
 return null
).property('availableElements', 'value').cacheable()
}

That’s it :)

Creating a Finisher Editor

Let’s say we have implemented an DatabaseFinisher which has some configuration options like the table name, and you want to make these configuration options editable inside the Form Builder. This can be done using a custom handlebars template, and some configuration. In many cases, you do not need to write any JavaScript for that.

You need to do three things:

	Register the finisher as a Finisher Preset

	Configure the finisher editor for the form to include the newly created finisher as available finisher

	create and include the handlebars template

TYPO3:
 Form:
 presets:
 yourPresetName: # fill in your preset name here, or "default"
 # 1. Register your finisher as finisher preset
 finisherPresets:
 'Your.Package:DatabaseFinisher':
 implementationClassName: 'Your\Package\Finishers\DatabaseFinisher'
 formElementTypes:
 'TYPO3.Form:Form':
 formBuilder:
 editors:
 finishers:
 availableFinishers:
 # Configure the finisher editor for the form to include
 # the newly created finisher as available finisher
 'Your.Package:DatabaseFinisher':
 label: 'Database Persistence Finisher'
 templateName: 'Finisher-YourPackage-DatabaseFinisher'
 FormBuilder:
 handlebarsTemplates:
 # include the handlebars template
 Finisher-YourPackage-DatabaseFinisher: resource://Your.Package/Private/FormBuilderTemplates/DatabaseFinisher.html

Now, you only need to include the appropriate Handlebars template, which could look as follows:

<h4>
 {{label}}
 {{#view Ember.Button target="parentView" action="remove"
 isVisibleBinding="notRequired"
 class="typo3-formbuilder-removeButton"}}Remove{{/view}}
</h4>

<div class="typo3-formbuilder-controlGroup">
 <label>Database Table</label>
 <div class="typo3-formbuilder-controls">
 {{view Ember.TextField valueBinding="currentCollectionElement.options.databaseTable"}}
 </div>
</div>

Tip

Creating a custom validator editor works in the same way, just that they have to be registered
underneath validatorPresets and the editor is called validators instead of finishers.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/FormBuilder.png
Form Builder - Contact Form

STRUCTURE
© Contact Form (Form)
B g form
(]
@ email
B @ sectiont

.

[Framevorks

B tanguages
e
[s

INSERT ELEMENTS

@ Single-Line Text
@ Multi-Line Text

© Single Checkbox
[single Select (Dropdowm)

[E single Select (Radicbuttons)
[Multple Select (Dropdovm)
[Muttiple Selact (Chackboxas)

B Date Picker
@ File Upload
B 1mage Upload

Static Text

8 Section (Fieldset)
B Page
i Preview Page

Interests:

Frameworks

Comment

[Zend Framework

Bootstrap B Qerevew & Save
L

p— o

wabe

Plceholder

octoutvoive:

Required:

required field

Selecta validatorto add =

_images/structure.png
Loading / saving a form definition

‘Build up a FormDefinition ArfayFormFaciony Save and load forms; used by the Form
object, and retum it S Torm factory can Buld 3 or Builder to asplay a st of forms, and to

tom an array of the format which load and save them.
the FormBuilder understands.

<<saieaios>

! Defining a form Rendering a form

y <coreates>>
Form Defilon Form Aunime
Diormain Model of e for. Reprasents he current Sate
ofthe form wi al the
Submited values. You can use
“AFinisher s execied once a e e
o s complealyfled wih ke an ary
. data and fnally submited. -
N
Page | §
Onlyore pag of a o s 8
displayedat once Lo Processmgrue ¥
ApHazeSsing Ul Contains '
- ‘property mapping and Renderer
} valdaton s fo a partof the Render & FarmDefilon, 8 PAG 07a
form. Form Element.
Iy
FIuid Forim Renderer
DefaU randerer, WHch uses & FIUd
{emplte o render the form
Section
SECHo Tnplemeis a
,,,,.,m,,,k,"g,,w,,,,g of ‘Base class for custom PHP based
form efements. Thus, renderers.
shares characteisics from
both a Page (because thas
both 2 Page because N —
FormElement (because it Legend
appears inside a page).

every class with orange background is a defined extension point.

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Flow Form Framework 1.2 Documentation

 		
 Quickstart

 		
 API Overview

 		
 Anatomy of a Form

 		
 Create your first form

 		
 Render a form

 		
 Validation

 		
 Finishers

 		
 Summary

 		
 Next Steps

 		
 Adjusting Form Output

 		
 Presets Explained

 		
 Form Element Types Explained

 		
 Supertypes

 		
 Creating a Custom Preset

 		
 Adjusting a Form Element Template

 		
 Changing The Form Layout

 		
 Creating a New Form Element

 		
 Extending Form API

 		
 Custom PHP-based Form Elements

 		
 Custom Form Element Renderers

 		
 Configuring Form Builder

 		
 Adding a New Form Element Inside “Create Elements”

 		
 Creating a New Form Element Group

 		
 Setting Default Values for Form Elements

 		
 Contrasting Use Case: Gender Selection

 		
 Marking Validators and Finishers As Required

 		
 Finishers

 		
 Finishing Up

 		
 Extending Form Builder

 		
 Adjusting the Form Builder with Custom CSS

 		
 Overriding Form Builder Handlebars Template

 		
 Creating a Custom Editor

 		
 The Basic Setup

 		
 Implementing the Editor

 		
 Saving the Selection

 		
 Creating a Finisher Editor

_static/up-pressed.png

_static/up.png

